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Abstract. Research conducted in 2011-2014 revealed the main trends in structural and quantitative
changes in zooplankton in the Volga delta channels in low-water years compared to middle-water years.
It has been shown that in dry years, zooplankton is characterized by a decrease in species richness
and high quantitative development of juvenile stages of Copepoda. In a mid-water year, zooplankton is
characterized by a high total and specific species richness, an average individual mass of Crustacea, in
the spring — a high biomass of Cladocera, in the summer — a decrease in the abundance and biomass
of Cladocera, an increase in the quantitative characteristics of Rotifera, and among ecological groups —
the proportion of floating organisms. The formation of zooplankton is influenced by a complex of factors,
among which, at different times, are the volume of runoff, water level, the rate of its rise, the period of
standing and the value of the maximum level, temperature conditions, the duration of the flood, the
water content of the floodplain, control by juveniles fish.
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NMPOTOKOB AeNibTbl Bonru

B BeCeHHe-NeTHUM nepuon
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Hekoy3ackuli p-H, noc. bopok, 8. 109
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AHHoTauumsa. NpoBeaeHHble B 2011-2014 rT. nccrnenoBaHWs BbISIBUNU CTPYKTYPHBIE U KONTMYECTBEHHbIE
N3MEHEHUS 300MMaHKTOHa MPOTOKOB AenbThl Bonrm B ManoBoaHble rogbl MO CPaBHEHUIO CO cpedHe-
BOOHbIM. [1oKa3aHo, YTO B ManoBOAHbIE MOAbl 300MMaHKTOH XapakTepU3YeTCs CHWDKEHNEM BMAOBOIO
BoraTcTBa M BbICOKUM KONMWYECTBEHHbIM pa3BMTUEM lOBEHWUNbHbIX cTagui Copepoda. B cpegHesoa-
HbIM rof 300MJTAaHKTOH OTNIMYaeTCs BbICOKMM O6LWLMM 1 yaenbHbIM BUAOBBIM 6oratcTBoM, cpegHen nH-
ONBMAYyanbHOM Maccor pakooOpasHbIX, BECHOW — BbICOKOW BGMOMacCon BETBUCTOYCbIX pakoobpasHbIX,
NeTOM — CHWXEeHMEeM 4YmcrneHHocTn u Bnomaccel Cladocera, NoBbILEHWEM KONMYECTBEHHbIX XapakTe-
puctuk Rotifera, a cpegn akonormyecknx rpynn — AOnv NraBalowWmMx opraHn3moB. [lokasaHo, 4To Ha
hopMMpOBaHUE 300MIAHKTOHA OKa3blBaeT BNMUSHUE KOMMMEKC (hakTopoB, Cpean KOTOpbIX B pa3Hoe
BpeMms BblAenstTCs 06bem CToKa, ypoBEHb BOAbI, CKOPOCTb €ro Nogbema, CPOKN CTOSTHUA U BENnn4YmHa
MaKCMMarbHOro YpOBHS, TEMMNEPATYPHbIN PEXMUM, NPOSOIMKUTENBHOCTL MONOBOAbS, OOBOAHEHHOCTb
MOMMbI, KOHTPOJSIb CO CTOPOHbLI MOSI0AM PbIO.

KnrouyeBble cnoBa: FI/IJJ,pOJ'IOFM‘-IeCKI/Iﬁ pexum, norogHble yCrioBuA, KOHTPOJ1b CBEpPXY, BUAOBOE oorat-
CTBO, KONMNM4YeCTBEHHbIE XapaKTepPUCTUKKN, 3Kororn4eckne rpynnbl

®PuHaHcupoBaHue. PaboTa BhinonHeHa B pamkax Tembl «Cuctemaruka, pasHoobpasne, bronorns n ako-
nornst BOAHbIX U OKONOBOAHbIX 6ECMO3BOHOYHbIX, CTPYKTYpa MOMNynAUMiA U COOOLLECTB B KOHTUHEHTarb-
HbIX Bogax» rocygapcteeHHoro 3aganna BBB PAH (Ne 121051100109-1).
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Introduction

Within the deltas of large rivers there are unique and at the same time vulnerable ecosystems
(Alekseevskii et al., 2016), which is explained by the genesis of water bodies — redistribution and
significant transformation of physical, chemical and biological characteristics of runoff, interaction of river
and sea waters (Alekseevskii et al., 2014; Mikhailov, 1997, 1998; Nigamatzyanova et al., 2015). The
delta of the Volga River is one of the largest in the world; it is characterized by a complex hydrographic
net with specific ecological conditions (Astrakhansky zapovednik, 1991; Chuikov et al., 1996; Gorbunov,
1976). Volga water enters the sea through channels that occupy about 6.5% of the delta area (Gorbunov,
1976). The channels have a trough-shaped cross-section, with prevailing depths ranging from 1—4 to
10-15 m and widths reaching several tens of meters (Chuikov et al., 1996).

The Volga Delta channels serve as habitats for riparian fishes (gouster Blicca bjoerkna Linnaeus,
1758, rod Aspius aspius Linnaeus, 1758, pikeperch Sander Iucioperca Linnaeus, 1758, perch
Perca spp. Linnaeus, 1758, silver carp Carassius auratus Linnaeus, 1758) and migration routes for
semi-anadromous species (roach Rutilus rutilus caspicus Jakowlew, 1870, bream Abramis brama Berg,
1949, carp Cyprinus carpio Linnaeus, 1759) (Astrakhansky zapovednik, 1991). The current flood regime
and anthropogenic intra-annual redistribution of flow in the Volga Delta largely do not meet the interests
of fisheries, contribute to changes in the conditions of biodiversity formation, quantitative characteristics
of biological resources, and reduce the biological runoff (Gorbunov, 1976; Gorbunova, 2005; Koblitskaya,
1992; Litvinov and Podolyako, 2014; Taradina and Chavychalova, 2017). This leads to partial loss of
fish spawning grounds, disruption of conditions for its reproduction and formation of a food base for
young fish and, as a result, to a decrease in the efficiency of natural reproduction (especially of roach
and bream) (Gorbunov, 1976; Kizina and Ponomareva, 2009; Levashina and Ivanov, 2014; Litvinov and
Podolyako, 2014; Taradina and Chavychalova, 2017; Vetlugina, 2012;). Especially strong depressing
effects on fish reproduction in the delta are observed in years with low-water flow of the Volga and
regression of the Caspian Sea (Alekhina and Finaeva, 2001; Katunin, 1971; Kizina, 1999; Litvinov,
2018; Podolyako, 2013, 2018; Taradina and Chavychalova, 2017; Taradina et al., 2008; Vasilchenko,
1977) that continues at present.

Zooplankton are among the main elements of trophic networks of diverse water bodies (Derevenskaya
et al., 2012; Gliwicz, 2003; Gutelmacher et al., 1988; Kryuchkova, 1989, Stolbunova and Stobunov,
2010). Characteristics of zooplankton are widely used as indicators of ecological processes and
condition of water bodies (Fedyaeva and Fedyaev, 2022; Lin et al., 2014; Trindade et al., 2018). In
floodplain reservoirs and watercourses, the main factor influencing the formation of its communities is the
hydrological pulse (periodic inundation of the floodplain with water during floods) (Fashchevsky, 2007;
José de Paggi et al., 2014; Schdll et al., 2012). Fluctuations in the level of the main river determine the
degree to which it is connected to the floodplain and have a significant impact on zooplankton (Frutos et
al., 2006). Prolonged periods of extreme low-water years act as a stressor for aquatic organisms (José
de Paggi et al., 2014) and influence changes in water quality (Lake, 2003).

Zooplankton in the Volga Delta water bodies have been studied for a long time — since the mid
19th century (Baer, 1856; Benning, 1924; Ivlev, 1940; Kosova, 1957, 1958, 1960; Skorikov et al., 1903;
Zinoviev, 1947, 1970, et al.). Much attention was paid to studying the influence of river flow regulation on
the species composition, seasonal dynamics and ecology of the planktonic invertebrates of typical water
bodies of the Volga delta and their role in the nutrition of young fish (Kosova, 1965a, b, 1968a, b, 1970).
It was noted that as a result of flow regulation, processes of biocenosis structure reorganization and
adaptation of organisms to new conditions began: sharp level fluctuations, late and short floods, changes
in thermal regime and transparency (Kosova, 1970). In the channels in the first years after regulation,
the number of species increased due to phytophilic, benthic and penetrated northern species, and the
number of zooplankton also increased (up to 85.6-549.8 thous. ind./m?®) (Astrakhansky zapovednik,
1991; Kosova, 1970). In the late 1960s — early 1970s, during the period of flow reduction, a decline in
zooplankton development was observed; its maximum abundance in the delta channels was in the range
of 28.5-67.5 thous. ind./m? (Astrakhansky zapovednik, 1991). A number of hydrobiological studies in the
conditions of the Caspian Sea level rise from the late 1970s to the late 1990s showed that there was an
increase in the proportion of rheophiles, expansion of the area of distribution of species of the Caspian
brackish-water complex and penetration of northern invertebrate species, as well as an increase in the
zooplankton abundance of the channels up to 630.7-977.6 thous. ind./m*® (Astrakhansky zapovednik,
1991; Gorbunov and Kosova, 1991; Gorbunov et al, 1996, 1999, 2003; Kosova and Gorbunov, 1989;
Kosova et al., 1989). Beginning in 2006, the modern stage of the low-water period was observed,;
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the years we studied included low-water years, which differed among themselves by parameters of
weather and hydrological conditions, as well as mid-water years. At the same time, the available studies
insufficiently describe structural changes in zooplankton of the channels under conditions of years of
different water content.

Therefore, the aim of this work was to analyze interannual changes in the zooplankton structure
of the Volga Delta flow zone in spring and summer depending on weather conditions and hydrological
regime.

Materials and methods

Primary material was collected in the spring-summer period (April-August) 2011-2014 at the
Obzhorovsky site of Obzhorova channel (N 46.304796 E 48.986697), and at the Damchiksky site of
Bystraya channel (N 45.790011 E 47.888501) and Lotosny erik (N 45.782200 E 47.879360) of the As-
trakhan State Reserve.

During sampling, 100 liters of water were filtered through a plankton net with a mesh size of 64 ym,
and desktop processing was carried out using standard methods (Metodicheskie rekomendatsii...,
1982). The zooplankton condition was assessed by species richness (number of species encountered),
specific species richness (number of species in the sample), abundance, biomass, ratio of species num-
ber, abundance and biomass of taxonomic groups of invertebrates, dominant species, Shannon index
of abundance and biomass, average individual mass of crustaceans, share of ecological groups in total
abundance and biomass. Ecological groups were identified on the basis of invertebrate classifications
based on a feeding type and a mode of locomotion (Krivenkova, 2018; Chuikov, 1981a, b).

Information on water level and temperature was obtained from the data of water gauging stations of
the Astrakhan State Reserve on the Bystraya channel', the volume of the Volga River flow near Volgo-
grad was obtained from Rosgidromet data?.

Statistical analysis was carried out using parametric indices in normal distribution (ANOVA) and
nonparametric methods in the reverse case (Kruskal-Wallis H-Test), and normality test — by the Shap-
iro-Wilk test. The Pearson correlation coefficients (p < 0.05) (in case of normal distribution) and Spear-
man correlation coefficients (p < 0.05) of abiotic factors and zooplankton indicators were determined in
Microsoft Excel 2010 and STATISTICA 10 programs (Khalafyan, 2007). Statistical methods were used
to establish the reliability of differences between zooplankton indicators in years with different water
availability, as well as to identify its dependence on abiotic factors.

Characteristic of weather and hydrological conditions in 2011-2014

A detailed description of the hydrological regime during the study period is given in a number of
works' (Litvinov, 2018; Litvinov and Podolyako, 2014; Podolyako, 2013, 2018). Based on the average
annual runoff of 252 km?3, 2011, 2012, and 2014 are classified as low-water years (runoff in these years
was 201, 240, and 224 km? per year, respectively), and 2013 to medium-water (271 km?) (Podolyako,
2018). The maximum amount of precipitation in spring was in 2011 (143.7 mm), while in 2012-2014
its total was significantly lower (29.5-26.5 mm). In summer, the highest amount of precipitation was
recorded in 2013 — 68.2 mm, in 2011-2012 — 48.9 and 46.1 mm, and in 2014 this indicator was the
lowest — 10.4 mm.

Low-water years were characterized by a number of features. In 2011, the lowest runoff volume
(92 km?) and a short flood (68 days) were recorded. Besides, a significant decrease in water level before
the flood — in March—April (-23 cm) and its subsequent sharp rise (by 109 cm), a large difference in the
level on the date of the beginning of the flood and the date of the maximum level (138 cm), the lowest
maximum level (289 cm) and a short duration of its standing (8 days) were noted. This year was also
characterized by prolonged cold weather, low air and water temperatures in spring, and a late transition
through +4 °C mark (April 6). In June, the water level drop was sharp (-63 cm) and in July more gradual
(=15 cm). Among the low-water years, 2012 was characterized by the highest spring runoff volume
(114 km?), water level decrease before the flood (=46 cm), maximum level (309 cm) and duration of its
standing (21 days). In addition, in this year the level rise occurred in two stages. First, there was a sharp
rise in the flood, the greatest difference in levels on the date of the beginning of the flood and the date of

" Letopis’ prirody Astrkhanskogo zapovednika [Annals of Nature of the Astrakhan State Reserve], 2011-2014.

2 Federal Service for Hydrometeorology and Environmental Monitoring (Roshydromet), 2022. Web page. URL: https://www.
meteorf.gov.ru / (accessed: 02.09.2022).
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its maximum value (145 cm), the latest dates of maximum level standing (May 24), late dates of water
temperature transition through +4 °C (April 6). Then a sharp rise in temperatures to maximum values
in April. Stabilization of high water levels and late establishment of low water levels were observed in
June, but in July there was a sharp decrease (to -62 cm). In 2014, a low volume of runoff for the flood
period (101 km3), late (April 27) and short flood (68 days) were recorded. However, compared to other
low-water years, the highest and most stable water level before the onset of the flood was registered,
there were no fluctuations during 3 months (February—April). This contributed to smooth level rise,
minimal difference of levels on the date of flood onset and the date of its maximum value (92 cm), early
(May 14) but short standing period (12 days) of the maximum level (298 cm). In addition, early dates of
water temperature transition through +4 °C (March 26) and smooth temperature rise were recorded. In
June, a significant decrease in the level (up to —63 cm) was noted, which continued in July (-31 cm).

The mid-water year 2013 was characterized by early (28 March), high (317 cm) and long flood
(123 days) with a large volume of runoff (140 km?®) and a long period of maximum level standing
(41 days). Before the onset of flooding, a decrease in March (—16 cm) and a high level in winter were
noted, although the difference in level at the onset of flooding and at the period of maximum level was
not as high (126 cm). Also, this year was characterized by early dates of water temperature transition
through +4°C (March 26), late, but the sharpest decline of the flood in July (=83 cm).

The findings showed the direct relationships between the volume of runoff during the flood period
and water temperature in May (r= 0.74), water level in April-July (r=0.81-0.99), maximum water level (r
= 0.96), the difference in water levels in June—May and April-March (r= 0.87; 0.63), the number of days
of standing maximum level (r = 1.00), flood duration (r = 0.98), flood end date (r = 0.76), juvenile fish
yield (r = 0.85) and water level at the beginning of the flood (r = 0.45), as well as negative relationships
with total precipitation (r = —0.68), May—April water level difference (r = -0.56), including the date of
water temperature transition through +4 °C (r = —0.51). The end date negatively (r = —=1.0) and duration
of flooding (r = 0.73), water temperature in July (r = 0.64), and water level in June and July (r= 0.62 and
0.75) directly correlated with summer precipitation.

Results

During the study period, 147 invertebrate taxa were recorded in the zooplankton composition of the
channels, including Rotifera — 71, Copepoda — 40, and Cladocera — 36. Also in the samples Protista
species (10) and representatives of Ostracoda, Oligochaeta, Nematoda, Arachnidae, Chironimidae,
Coleoptera, Plecoptera, Ephemeroptera, Simuliidae, Gastropoda, Larvae Pisces, Dreissena veligera,
Hydra sp. were noted. The lowest species richness of zooplankters was recorded in 2011-2012 and the
highest — in 2013 (Table 1).

Spring

Every yearin 2012—2014, 4 species were consistently (75—100% of samples) found in the zooplankton
composition, in 2011 was 1. Among them, only Keratella quadrata (Muller, 1786) was present throughout
the study period. In 2012—2014 Brachionus calyciflorus (Pallas, 1766) was present, in 2012-2013 it
was Coronatella rectangula (Sars, 1862), in 2013-2014 Chydorus sphaericus (Muller, 1785), in 2012
Euchlanis dilatata (Ehrenberg, 1832), and in 2014 Bosmina longirostris (Muller, 1785).

Specific species richness ranged from 13.5 + 6.9 to 24.0 + 13.0, with the highest recorded in 2013
and the lowest in 2011 and 2012, but differences were not confirmed statistically (Fig. 1). The number
of species in the sample was directly related to total level change (r = 0.64), water level in February (r =
0.43) and water temperature (r = 0.57).

The basis of specific species richness was rotifers, with the maximum number of rotifers recorded in
2012 and 2013 and the minimum in 2011 (Table 2). In 2013 and 2014, zooplankton was characterized
by the highest specific species richness of Copepoda and Cladocera, although only the number of
Copepoda species differed statistically significantly.

Specific species richness of Rotifera, Copepoda and Cladocera was positively correlated with water
level (r=0.65; 0.62 and 0.58), Rotifera was also positively correlated with water temperature (r= 0.61).
At the same time, negative correlations of specific species richness of Copepoda and Cladocera with
total precipitation (r=-0.46 and —0.45), including Cladocera with the date of water temperature transition
through +4 °C (r = —-0.44), were found.
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Table 1. Species richness of zooplankton in the channels of the Volga Delta in 2011-2014.

Year
Taxa
2011 2012 2013 2014

Rotifera 40 40 49 41
Copepoda 17 19 29 23
Cladocera 21 17 25 25

Total number of species 78 76 103 89
Others 11 13 12 13

Fig. 1. Specific species richness of zooplankton in the channels of the Volga Delta in the spring of 2011-2014.

Zooplankton abundance ranged from 0.9 £+ 1.5 to 10.0 % 6.3 thous. ind./m? and biomass from 2.5 +
4.9 t0 40.2 £ 36.0 mg/m?® (Fig. 2). Minimum abundance and biomass were recorded in 2011, maximum
density in 2012, and biomass in 2012-2013, but the differences were not statistically significant. However,
in 2012, the quantitative characteristics of Rotifera and Copepoda were statistically significantly higher
than the data obtained in other years; maximum abundance of Cladocera was recorded in 2014, and
biomass — in 2013 (Table 2).

Positive correlations of zooplankton abundance (r = 0.56), zooplankton biomass (r = 0.44), Rotifera
abundance and biomass (r=0.46; 0.53), Copepoda abundance (r = 0.63) with water temperature in April
were found. Copepoda abundance was negatively related to spring precipitation (r = —44), positively to
the date of flood onset (r = 0.44), and Cladocera abundance to water level at the onset of flooding (r
= 0.47). Similar to abundance and biomass of Rotifera (r = 0.48; 0.67), Copepoda (r = 0.53; 0.53) and
Cladocera (r = 0.67; 0.48). total abundance and biomass were related to water temperature dynamics
(r=0.68; 0.57).

In 2012—-2013, Rotifera formed the basis of abundance (Table 2) due to the dominance of Euchlanis
dilatata (2012—-2013), Brachionus quadridentatus (Hermann, 1783) (2012), B. calyciflorus (2012-2014),
Keratella quadrata (2013). In 2011, Copepoda prevailed with the dominance of juvenile Cyclopoida,
which were among the dominants throughout the study period. In 2014, the basis of abundance was
formed by Cladocera at the expense of Bosmina longirostris. Due to the dominance of the same species
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mean; B — biomass, median, mg/m3; % B — the share in the total biomass, mean; H, — the Shannon abundance index, mean,

bits/ thous. specimen; H, — the Shannon biomass index, mean, bits/g; w,

Crust

— the mean individual mass of crustaceans, mg; F —

Fisher’s test, H, , — Kruskal-Wallis test, p — significance level; = — significant differences (p < 0.05) between years, in pairwise
comparisons; significant differences between years are indicated in bold.

Year
Index . . . j F o Hew p
2011 2012 2013 2014
Rot  62+46 10.8 5.2 104 5.7 80+35 09 — 041
S Cop 25+1.3 41+1.9 6.6 +2.8° 60+24° 34 —  0.05
Clad 0.7 +15° 36+2.6 6.0 + 5.0° 41+24 20 - 014
Rot  03£13 4.6+ 5.7 0.7 2.1 12306 06 g, 0.3
384+305 5392245 474+209  36.6%25.1 6 061
N o oo 04+03° 204212 05+ 1.1 08:04  ,o g7 003
% N P 618:337° 390253 268+11.7° 206x253 18 &7 G737
0.03 +0.01 0305 1.3+1.9 1.9+2.9 0.08
Clad 48337 60£7.7 25.7+284  336:344 21 66 o7
Rot  0.9£4.3 26.1+40.9 17497 26112  ,9 o 0.09
415:312 714+228 309+240° 335%274 2 2 0.05
B o 08+08 41£35 48+54 38462 . sy 012
%B P 525:331° 174%122° 307:253  314%278 - 7 022
0.2+ 05¢ 07+34c  19.6£29.722 107136 0.16
Clad 56 :11. 106+171 374:363 3462208 19 50 G795
H, 2.9+ 0.3 24+07 3.2+ 0.6 21+04%¢ 39 —  0.02
H, 26+0.6 3.0+0.6 31+07 22+06 12 - 032
W, 0.001+0.001 0.006+001 0.009+001 0003+00016 08 — 047
A B

Fig. 2. Abundance (A) and biomass (B) of zooplankton in the channels of the Volga Delta in the spring of 2011-2014.
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as in terms of abundance, most biomass in 2011 provided Copepoda, in 2012 — Rotifera, in 2013 and
2014 — Cladocera (Table 2).

Positive correlations with water level were found with the proportion of Cladocera in total zooplankton
abundance and biomass (r = 0.46 and 0.53), while negative — with the proportion of Copepoda (r =
-0.79 and -0.53). In addition, the proportion of Cladocera in total abundance and biomass positively
correlated with water level at the beginning of the flood (r = 0.52 and 0.48), whereas negatively - with
the date of water temperature transition through +4 °C (r = -0.51 and -0.49), and the proportion in
total biomass was correlated with water level in April (r = 0.46). The proportion of Rotifera in total
biomass was positively related to the date of water temperature transition through +4 °C (r = 0.47) and
negatively - to water temperature in March and April (r = —=0.57 and -0.57). The proportion of Copepoda
in total abundance decreased with decreasing water temperature in spring (r = —0.51), but increased
with increasing precipitation (r = 0.45).

Among the invertebrate ecological groups, swimming organisms formed the basis of abundance
in 2013 and 2014, with a statistically significantly higher proportion of verticators in 2013, and primary
dominant fine and coarse filter feeders in 2014 (Table 3). Floating-crawling organisms also formed a high
proportion of the total abundance in all years, but their maximum abundance was observed in 2012 and
2013 at the expense of verticators, and in 2013 also at the expense of secondary filter feeders, scrapers

Table 3. The share (in %) of ecological groups of invertebrates in the total abundance of zooplankton in the channels of the Volga
Delta in the spring of 2011-2014. | — free-swimming organisms, Il — associated with the substrate, Il — attached to the substrate
and the surface film of water, IV — a mixed group of juvenile copepods; 1, 2 — verticators; 3 — fine filtrators; 4 — coarse filtrators;
5, 6 — primary, fine and coarse filtrators; 7 — secondary filtrators, scrapers and detritophages; 8 — collectors, omnivores; 9 —
active predators, omnivores copepods; 10 — grabbing predators with an incudate type of mastax; 11 — Copepoda predators; 12 —
attaching verticators; 13 — copepods filtrators and predators; F — Fisher’s test; @ — statistically significant (p < 0.05) differences
between years at pairwise comparisons; significant differences between years are indicated in bold.

Ecological group Year
By movement
and relation n5t¥i- 20112 2012 2013° 2014¢ or
substrate tion

1 8.81+29° 95+6.0°c 2234+ 14.2abd 52+55 42 0.02
6 0.9+1.8¢ 29+5.2¢ 104 +15.6 33.1+£36.02> 2.7 0.07
9 0 24+40 1.9+2.0 1.0+1.3 0.8 0.47
! 10 29+238 3.6+7.3 1.6+3.2 0.3+0.5 0.6 0.60
13 0 0.008 + 0.02 0.02 £ 0.06 0.01+£0.05 04 0.75
Total 12.7 + 3.5¢ 18.6 + 8.8 36.4+11.7 39.7+32.72 23 0.10
2 249+30.3 4051265 23.4+13.8 255+20.0 0.6 0.57
7 09+1.8 25+20 14.0 £ 26.8 2022 1.0 0.38
i 8 53+6.8° 0.5+0.6° 1.6+1.3 1.7+1.9 1.9 0.16
11 0.1+0.2 0.1+0.2 0.8+1.1 1.0£1.7 0.9 043

12 0 0 0 0 - -
Total 31.3+30.9 43.7+25.1 39.8+21.6 302+203 04 0.75
11 5 0 05+1.1 1.2+25 0.1+£0.3 0.7 0.55
3 50.3+36.7° 31.7+24.3 14.6 £ 9.4° 244+229 1.7 0.23
v 4 19+33 49+29 86+5.8 104+146 0.9 040
Bcero 52.3+353 36.6+24.8 23.2+14.8 348+223 1.0 042
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Table 4. Share (in %) of ecological groups of invertebrates in the total biomass of zooplankton in the channels of the Volga delta
in the spring of 2011-2014. Designations as in Table 3.

Ecological group Year
By movement _
and reition By nutr- 20112 20120 2013¢ 2014¢ P
substrate
1 6.4+6.1 23.8 + 35.1 3.3+29 1.7+5.0 1.6 0.22
6 1.9+3.8 36+6.7 17.0+241 294+343 1.8 0.18
9 0 8.1+9.1 9.1+6.8 7.8+9.9 09 046
! 10 58148 11.5+229 83+174 871189 0.07 0.97
13 0 0.06 £ 0.1 0.1+0.3 02+04 03 0.78
Total 142124 472+289 38.0+30.3 466374 1.2 0.33
2 26.3 £ 33.0 355+30.2 206+251 186+251 04 0.73
7 1.8+3.6 48+57 8.8+ 14.1 44+36 0.6 0.62
| 8 8.4+99 14122 36+64 120+x16.2 1.2 0.32
11 1.9+3.8 0406 59+85 71+11.2 1.0 040
12 0 0 0 0 - -
Total 38.5+33.8 422+285 3891226 423+31.0 0.02 0.99
11 5 0 24+58 1.6+212 18%39 1.0 0.37
3 44.6 £ 39.5>¢4  3.9+3.12 1.3+1.3° 46+6.12 6.3 0.004
v 4 1.6+2.8° 39+22 10.8+8.8° 6.0+57 23 0.1
Bcero  46.3+38.0°¢¢ 7.9+3.7% 121+92® 108+88 47 0.01

and detritophages. In low-water years, a mixed group of juvenile Copepoda by type of movement and
feeding reached high abundance, where fine filter-feeders dominated, the share of which in 2011 was
statistically significantly higher than in other years.

We found positive correlations of the share of floating organisms in the total zooplankton abundance,
floating primary fine and coarse filter-feeders with water level at the beginning of the flood (r = 0.54 and
0.50), floating verticators with water level in March (r = 0.44). In addition, the proportion of floating
verticators in total abundance negatively correlated with the date of flood onset (r = —0.63) and the
March—February water level difference (r = -0.58). The proportion of primary fine and coarse filter
feeders positively correlated with spring water temperature (r = 0.56), and the proportion of verticals -
negatively with water temperature (r = —0.46).

The basis of biomass among ecological groups of zooplankton in 2012-2014 was formed by floating
organisms (Table 4), with the dominance of primary fine and coarse filter feeders in 2013 and 2014, and
verticators in 2012, as well as predator-omnivores and incudate mastax predators. Swimming-crawling
organisms had a high proportion in all years at the expense of verticators, in 2013 due to secondary filter
feeders, scrapers and detritophages, and in 2011, 2014 — collectors and omnivores organisms. In 2011,
the proportion of the mixed group of juvenile Copepoda by feeding and movement type was statistically
significantly higher than in the other years.

This group demonstrated strong correlations with total precipitation in spring (r= 0.73) and negative —
with water level in January. The proportion of fine filter feeders negatively correlated with water levels in
January—April (r = -0.44 and -0.72), while coarse filter feeders positively with water levels in January
and April (r = 0.53 and 0.53). The group of juvenile copepods and fine filtrators mixed in feeding and
movement patterns negatively correlated with water temperature in spring (r = —0.50 and —0.46), while
the proportion of floating primary fine and coarse filtrators positively correlated with water temperature (r
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= 0.53). Negative correlations were found between the proportion of primary fine and coarse filterers and
the date of water temperature transition through +4 °C (r = -0.45), and the proportion of free-swimming
verticators through +10 °C (r = —0.46).

The Shannon index values for abundance in 2011 and 2013 were statistically significantly different
from those in 2014; for biomass, the highest values were found in 2012—2013. Mean individual crustacean
masses were not statistically significantly different between years, but the highest indicators were found
in 2013, whereas the lowest — in 2011 and 2014 (Table 2).

Summer

Each year, 3 consistently occurring species were recorded in the composition of zooplankton, in all
years — 2 species Brachionus calyciflorus and Bosmina longirostris. Also, Asplanchna priodonta (Gosse,
1850) were present in 2012-2013, Coronatella rectangula — in 2011 and 2014, and Thermocyclops
oithonoides — in 2012 (Sars, 1863).

Specific species richness ranged from 18.8 + 3.8 to 23.0 + 6.6. The maximum number of species in
the sample was recorded in 2013 due to Rotifera and Copepoda, while the minimum number of species
was recorded in 2011. The highest number of Cladocera species was noted in 2014, although the
differences were not confirmed statistically (Fig. 3, Table 5). The specific species richness of Rotifera
was found to be directly correlated with water levels in May and June (r = 0.61 and 0.47), number of
flood days (r = 0.53).

Zooplankton abundance ranged from 6.8 + 2.7 to 14.7 £ 9.2 thous. ind./m® and biomass ranged
from 19.8 + 40.5 to 49.6 + 43.7 mg/m3. Zooplankton abundance and biomass were the highest in 2014
and the lowest in 2012, 2013, although these differences were not statistically significant (Fig. 4). The
maximum abundance of Rotifera was recorded in 2013, the minimum in 2011, Copepoda — in 2011,
2013, and Cladocera — in 2014 and 2011-2012 (Table 5). A direct correlation was revealed between
Cladocera abundance and water temperature dynamics (r = 0.51).

Rotifera formed the basis of abundance in 2013, Copepoda - in 2011 and 2014; these groups were
equally represented in 2012 (Table 5). The dominant species included Brachionus calyciflorus (2011—
2014), Asplanchna priodonta (2013), and juvenile Copepoda (2011-2014).

Direct correlations of Copepoda proportion in total zooplankton abundance with water temperature
in June were found (r = 0.52). The proportion of Rotifera was positively correlated with the maximum
water level and the date of its establishment (r = 0.47 and 0.49). There was an inverse correlation of

Fig. 3. Specific species richness of zooplankton in the channels of the Volga Delta in the summer of 2011-2014.
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Table 5. Quantitative indicators of zooplankton in the Volga delta channels in the summer of 2011-2014. Designations as in
Table 2.

Year
Index F o H., p
20112 2012 2013¢ 2014¢
Rot  7.0+34 71+4.1 105 + 3.2 65+30 16 — 020
S Cop  45+2.1 46+16 6.1+14 57+16 14 — 024
Clad  58+33 4.0+2.1 53+15 65+23 16 — 020
Rot 15423 34442 44417 2438 4o .5 047
281+223 416141  532+163 274%250 - 5 016
N 6.1+4.1 56 +4.0 1.8+ 1.1 37+8.8 0.30
%N COP  553+23.0° 482+179 029+85  466x248 24 38 509
08+15 09+15 13+ 1.1 23+24 0.40
Clad  {56+909 91462 229+203 256+196 10 29 {37
Rot B4t 44109 129102  81%155 g 45 024
342+233 335:190 504+275  332%300 O 5 045
B oop 116:146  11.8120.1 7.7+£4.2 66£125 4. g 062
%B P 3812203 514+16.8° 230+13.1° 321+273 6 021
Clag  87£299 44497 44+88 224£105 o o5 064
36.6+265 166:102 260+254 345+267 O 5 050
H, 24+08 26+05 29+06 25+04 05 — 066
H, 24+08 32406 3.1+1.0 28+07 07 - 051
w 0.004 +0.002 0.003+0.001 0.005+0.001 0003+0.001 16 —  0.20

Crust

Copepoda proportion (r = —0.52) and a direct one of Rotifera proportion (r = 0.47) with the number of
flood days. The proportion of Copepoda also negatively correlated with water level in April-June (r =
-0.46 and -0.55), while the proportion of Rotifera and water level in May and June (r = 0.46 and 0.49)
showed positive correlations.

Copepoda (2011-2012), Rotifera (2013) and Cladocera (2014) formed the basis of biomass.
Juvenile Copepoda (2011-2014), Brachionus calyciflorus (2011-2014), Asplanchna priodonta (2013),
Megacyclops viridis (Jurine, 1820) (2012), Bosmina longirostris (2011-2014) dominated. The proportion
of Copepoda in total biomass positively correlated with the May—April water level difference (r = 0.44)
and the date of maximum level (r = 0.48).

Among the ecological groups, swimming-crawling organisms formed the basis of zooplankton
abundance in 2012-2013, while in 2011 and 2014, the proportion of the mixed group of juvenile Copepoda
by mode of movement and feeding increased statistically significantly (Table 6). The maximum proportion
of swimming organisms due to primary fine and coarse filter feeders and predators with mastax incudate
type were recorded in 2013. The proportion of mixed group of juvenile copepods and fine filter feeders
by mode of movement and feeding were found to be negatively correlated with the yield of juvenile fish
on the spawning grounds (r = —0.53 and -0.56), duration of flood (r = -0.53 and —0.54), water level in
May (r=-0.49 and -0.48) and June (r=-0.50 and —0.54). The proportion of floating-crawling organisms
and floating-crawling verticators positively correlated with maximum water level (r = 0.43 and 0.44), and
floating organisms - negatively with the date of flood onset (r = —-0.47).

Throughout the study period, the biomass-dominant ecological groups included floating organisms
at the expense of primary fine and coarse filter feeders, with the maximum proportion observed in
2011 and 2014 (Table 7). In addition, in 2011 and 2014, the mixed group of juvenile Copepoda by
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A B

Fig. 4. Abundance (A) and biomass (B) of zooplankton in the channels of the Volga Delta in the summer of 2011-2014.

modes of locomotion and feeding had a high proportion, with maximum abundance in 2011. In 2013, the
proportion of predators with incudate mastax type statistically significantly increased, and the proportion
of swimming-crawling organisms also was growing due to verticators, with maximum reached in 2012.

Positive correlations of the share of swimming-crawling organisms in the total biomass with water
temperature were found in April and May (r= 0.47 and 0.47), and for mixed by mode of movement and
feeding of juvenile copepods — in June (r = -0.50). Negative correlations were noted for predators with
incudate type of mastax and mixed group of juvenile Copepoda with the date of maximum water level
establishment (r = -0.45 and —0.50) and for the latter group also with the duration of flooding (r = -0.45).
The proportion of swimming-crawling organisms was negatively correlated with spring precipitation (r =
-0.56).

The Shannon index values were not statistically significantly different, although the highest were for
indices calculated for abundance in 2013, biomass in 2012-2013, and the lowest — in 2011 (Table 5).
Interannual differences in mean individual crustacean masses were also not confirmed statistically, with
the maximum value found in 2013 and the minimum in 2012 and 2014 (Table 5).

Discussion

The studies conducted in 2011-2014 in the Volga Delta showed that in low-water years the speci-
ficity of environmental conditions is associated with a decreased runoff during floods, late rise in levels,
low levels, and their early recession. This contributes to the reduction of inundated floodplain areas,
the short duration of floodplains, the decrease in the intensity of organisms entering the channels and
organic matter from floodplain areas, including the increased role of abiotic factors in the development of
zooplankton (Beaver et al., 2013; Frutos et al., 2006; José de Paggi et al., 2014; Zalocar de Domitrovic,
2002). As a result, we note (confirmed by correlation coefficients) the decreased zooplankton species
richness and increased proportion of juvenile Copepoda at the expense of fine filter feeders previously
found in the kultuk zone of the Volga Delta (Fedyaeva and Fedyaev, 2020; Shtepina, 2013) and under
similar conditions in other regions (Frutos et al., 2006; José de Paggi et al., 2014; Keckeis et al., 2003).
Floodplain pools are known to act as a source of biota diversity for the main river channel (José de Paggi
et al., 2014; Schdll et al., 2012). The decrease in mean individual crustacean mass may be related to
an increase in the proportion of juvenile Copepoda, less input of large crustaceans and organic matter
from the floodplain.

In summer of low-water years, the specific species richness of zooplankton at the expense of Ro-
tifera and Copepoda decreased when the volume of runoff, duration of flooding and amount of alloch-
thonous organic matter decreased, and water level fluctuations occurred. The abundance and biomass
of Rotifera, the average individual mass of crustaceans, and the Shannon index of abundance also
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Table 6. Share (in %) of ecological groups of invertebrates in the total abundance of zooplankton in the channels of the Volga delta
in summer in 2011-2014. Designations as in Table 3.

Ecological group
By movement

and retion By hutri 20112 20120 2013¢ 2014¢ P
substrate
1 49+77 56+76 49+89  13+19 04 070
6 140+11.0 87+40 192%216 103+166 06 061
9 10+16 10+19  04+05  16%28 04 0.75
! 10 30+32 33+42 85+89  66+98 08 049
13 02+03 14+18  23%41  03+07 12 030
Total  233+107 203+140 354+19.9 203+179 11 0.36
2 202+17.0 383+163 40.1+195 229+198 18 0.16
7 10+10 14+13 35+62  29+36 06 057
8 06+12  16+24 03+03 05+06 09 042
! 1 33+69  17+21 10+18  12+13 04 072
12 0 0 0 0 - -
Total  255+212 446+153 473+248 27.9+199 18 0.17
m 5 002+003 007+01 01%02  04+07 13 028
3 36.0+17.9° 227+138 162+6.8%¢ 405+16.0° 3.4 0.03
W, 4 145+150 127+55 44+40 10395 11 036
Total  50.6+27.5° 354+17.4 20.7+86% 508+241° 25 0.08

decreased, but the total abundance increased at the expense of juvenile Copepoda. The obtained cor-
relation coefficients indicate the leading role of summer water level, flood runoff volume and water
temperature.

An increase in water availability contributed to a number of changes in zooplankton communities.
The maximum specific species richness and number of species encountered was recorded in the chan-
nels in a mid-water year, as previously noted (Fedyaev and Fedyaeva, 2020; Frutos et al., 2006; José de
Paggi et al., 2014). In addition, high zooplankton biomass due to crustaceans, as well as their maximum
average individual mass were observed. It is known that in high-water years, the proportion of large
cladocerans crustaceans increases in floodplain water bodies, from which they enter the watercourses
(Frutos et al., 2006). In the studied channels, this is confirmed by the presence of positive correlations
of Cladocera abundance and biomass with water level before and at the beginning of the flood, as
well as with water temperature. It is known that in spring in the channels, control from above by fish is
minimal, as the main spawning and nursery area for fish in mid-water and high-water years is hollow
spawning grounds (Koblitskaya, 1958; 1992; Litvinov and Podolyako, 2014; Podolyako, 2013; Taradina
et al., 2008). In addition, in spring of the midwater year, zooplankton was characterized by a maximum
share in the total abundance of floating verticators, but a minimum share of a mixed group of juvenile
crustaceans of Copepoda — at the expense of fine filter feeders (Fedyaeva and Fedyaev, 2020). Low
abundance of juvenile Copepoda in the river in years with high water availability has been described in
a number of papers (José de Paggi et al., 2014; Keckeis et al., 2003). The increase in the proportion of
floating verticators could be influenced by an increase in the influx of allochthonous organic matter from
the floodplain into the channels, the mass of which increases almost 6 thousand times at the flood peak
(Bogatov and Fedorovsky, 2017). Substrate and surface water film-associated primary fine and coarse
filter feeders, floating-crawling secondary filter feeders, scrapers, and detritophages were also noted
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Tabn. 7. Share (in %) of ecological groups of invertebrates in the total biomass of zooplankton in the channels of the Volga delta
in summer in 2011-2014. Designations as in Table 3.

Ecological group Year
By movement
and relation By nutri- 20112 2012 2013 2014¢ P
substrate

1 1.0+2.1 1619 1.7+3.3 04+07 04 0.74
6 31.8+30.7 13.0+6.5 245+263 164+238 0.8 048
9 52+84 5.9+9.1 19+24 6.3+7.6 0.3 0.78
! 10 8.6 +£13.3 53+55° 250+20.7° 1M4+144 21 0.12
13 34150 6.9+9.3 48+8.1 1.81+4.1 0.6 0.61
Total 50.3+20.3 328+19.7 58.1+193 36.5+268 1.7 0.19
2 123+ 116> 33.0+186° 21.7+127 212+232 15 0.23
7 1.9+3.0 16+14 40+82 46+73 04 0.69
8 06+1.5 3.1+5.0 0.5+0.9 1.5+1.6 09 042
! 11 26+28 8.7+11.5 3.5+6.3 5.6+6.4 0.7 0.52

12 0 0 0 0 - -
Total 175+15.1° 46.4+20.9° 299+206 33.1+195 24 0.09
11 5 02+04 0.3+0.7 1.4 +3.1 19+29 09 043
3 9.9+8.0° 3.2+26° 3.8+3.1 104+69 28 0.06
v 4 21.4+20.3 16.8+9.6 6.2+7.6 16.1+158 1.0 0.39
Total 31.3+£20.8° 20.1+11.7 10.0+9.8° 266+201 1.8 0.19

among the dominant groups. Since many species utilize particulate organic matter as a food source
(Wallace et al., 2006), the detection of phytophilic organisms in channels indicates that they come from
floodplains with vegetation present (Frutos et al., 2006). The main importance of allochthonous organic
matter in the biological productivity of the lower reaches of the Volga delta was pointed out by K.V. Gor-
bunov (1976). In the water area of the channels, destruction exceeds primary production, which occurs
due to translocation and destruction of excess organic matter from the flooded floodplain.

In summer of the mean-water year, an increase in the specific species richness of Rotifera and
Copepoda and in quantitative indices of Rotifera was observed. It is known that in high-water years, the
number of rotifers in rivers growes (Corrales, 1979; José de Paggi, 1993; Vasquez and Rey, 1989) due
to their short generation phases (Gulyas, 2002; Lansac Toha et al., 2004; Pourriot et al, 1982; Rz6ska,
1976), better adaptation to turbulence and high suspended sediment concentrations (Armengol et al.,
1983; Bonetto and Corrales de Jacobo, 1985; José de Paggi and Paggi, 2007; José de Paggi et al.,
2014; Kirck and Gilbert, 1990). At the end of flooding, the channels are enriched with organic matter due
to its removal from the floodplain (Kosova, 1970), which leads to the creation of more favorable trophic
conditions conducive to the mass development of rotifers. This, in turn, is confirmed by the positive
correlation of specific species richness and the share of rotifers in total abundance with water level,
runoff volume, date and magnitude of maximum level, including duration of floods. Decrease in specific
species richness and biomass of Cladocera, average individual mass of crustaceans and high values of
the Shannon index for abundance and biomass are determined by the increased control by young fish.
It is known that Cladocera abundance and biomass drop with increasing control from above (Bartell and
Kitchell, 1978; Gilyarov, 1987; HrbacCek, 1962; Stenson et al., 1978; Zhang et al., 2019). Besides, due
to the eating of the most conspicuous large-sized and numerous food objects (Gliwicz, 2002; Murdoch,
1969; Murdoch et al., 1975), the Shannon index, especially calculated by biomass, increases. Favorable
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conditions in floods and provision of food objects were responsible for appearance of a high proportion
of predators with incudate type of mastax (Kosova, 1965).

At the same time, changes in zooplankton were also revealed for some low-water years. In spring
2011, zooplankton was characterized by minimal quantitative characteristics. This year was charac-
terized by the lowest volume of runoff, a significant decrease in water level before the flood and then
its sharp rise, a large difference between the level on the date of the beginning of the flood and the
maximum level, the lowest and shortest period of its standing, prolonged cold weather, late transition of
water temperature through +4 °C, low yield of young fish on the spawning grounds (Podolyako, 2014;
Taradina and Chavychalova, 2017). As previously indicated by A.A. Kosova (1970) and K.V. Gorbunov
(1976), the decrease in zooplankton abundance and biomass was due to the influence of untimely water
releases accompanied by a sharp rise and fall of the level. In addition, in years with a later spring, pro-
tozoa, small rotifers and naupliuses of Copepoda are the first to develop in mass (Kosova, 1965), which
explains the decrease in the number of trophic groups, the predominance of a mixed (by feeding and
movement) group of juvenile copepods of fine filter feeders, as well as the low average individual mass
of crustaceans, but high Shannon index of abundance. In low-water years, large Cladocera are scarce
in the floodplain (Frutos et al., 2006) that explains their low quantitative representation in the channels
as well. This is also confirmed by the inverse correlation of Cladocera abundance and specific species
richness with the difference between the maximum and initial water level.

In the summer of 2011, during the early low water period and the lowest water level, zooplankton
was characterized by low specific species richness, the highest abundance of Copepoda due to juvenile
individuals and the lowest number of rotifers. A decrease in rotifer density under low water conditions
was also observed in other watercourses (José de Paggi et al., 2014) and associated with reduced
inputs of allochthonous organic matter and organisms from the floodplain. Simultaneously, the number
of crustacean species, average individual crustacean mass, and biomass of Cladocera (primary fine
and coarse filter feeders) increased in the summer of 2011 relative to spring, and the Shannon index of
abundance and biomass decreased. Obviously it is explained by the reduced control from above due
to low yields of juvenile fish in the floodplain (Podolyako, 2014), as well as the late onset of biological
spring due to prolonged cold weather.

Among the low-water years, 2012 was characterized by the largest volume of runoff, maximum
decrease in water level before the flood, high difference between the maximum level and the level at
the date of the beginning of the flood, sharp water rise, the latest dates of standing maximum levels,
the highest and longest maximum level, with late dates of water temperature transition through +4 °C,
but then a sharp rise to maximum values in April, one-time spawning of fish on the spawning grounds
(Litvinov and Podolyako, 2014). Under these conditions, a rapid and significant increase in the number
of species and abundance of Rotifera and Copepoda took place in spring. It is known that outbreaks of
mass development of zooplankton in spring are possible when there are sufficient numbers of bacteria
and other microorganisms multiplying at the expense of allochthonous organic matter of the previous
vegetation period (Gorbunov, 1976; Kosova, 1970). During late and cold spring, outbreaks of mass
development of a number of spring species coincide, resulting in a sharp increase in total zooplankton
abundance (Kosova, 1970). At the same time, low quantitative characteristics of Cladocera were ob-
served, which, as indicated by correlation coefficients, was associated with the delayed temperature rise
in late March and early April, late flooding and low water levels before the onset of flooding.

In the summer of 2012, which differed from other low-water years by stabilization of high water levels
in June, late establishment of low water levels, and abrupt rise in two stages, the abundance of Rotifera
(floating-crawling verticillators) remained high. In addition, control from above increased in summer, as
juvenile fish rolled into channels after feeding on hollow spawning grounds and as water levels dropped
(Kizina, 1999; Koblitskaya, 1958, 1966). Simultaneous and late spawning of fish with subsequent roll-
ing of juveniles into channels resulted in the formation of communities characterized by low values of
Cladocera abundance and biomass, average individual crustacean mass, and relatively high Shannon
index of biomass.

In spring 2014, zooplankton was characterized by the highest quantitative indices of all taxonomic
groups of invertebrates in the series of low-water years, as well as increased specific species rich-
ness of Copepoda, which was associated with the peculiarities of weather and hydrological conditions:
warm and early spring, coincidence of the timing of water level rise and its temperature. According to
A.A. Kosova (1970), it is under these conditions that zooplankton is characterized by high average
annual abundance and biomass. According to A.A. Kosova (1965), outbreaks of mass development of
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rotifers coincide in time with the mass appearance of planktonic algae and bacteria, which serve as food
for them, and precede the mass reproduction of predatory rotifers. Obviously, the dominance among
ecological groups of invertebrate predators with mastax incudate type is related with these factors. At
the same time, the low flood level did not lead to enrichment of the channels with organic matter and
zooplankters from the water bodies of the flooded areas that contributed to further reduction of specific
species richness of zooplankton, the average individual mass of crustaceans and the Shannon index.

In summer, against the background of the upper control reduction due to the low yield of juvenile fish
(Taradina and Chavychalova, 2017), zooplankton was distinguished by high abundance and biomass,
including at the expense of Cladocera, as well as a decrease in the Shannon index. The influence of
the control from above also determined the representation of ecological groups, among which floating
primary fine and coarse filter feeders prevailed.

The influence of a number of factors provided similar features of zooplankton organization in some
years. Thus, in low-water year 2012 and mid-water year 2013, longer periods of maximum flood levels
and duration, and later establishment of low-water period were observed. Due to this, spring zooplank-
ton was characterized by high individual mass of crustaceans due to the input of organisms and organic
matter from floodplain water bodies. In summer, relatively high control from above was noted in both
years, resulting in a decrease in total zooplankton biomass, number of species and Cladocera biomass,
and an increase in the Shannon index.

In 2013 and 2014, in spite of different runoff volume, similarity in temperature regime in March early
April, close dates of water temperature transition through +4 °C, higher water level before the begin-
ning of the flood, the smallest difference between the maximum level and the level at the beginning of
the flood were also found. Under these conditions, the quantitative characteristics of crustaceans, the
proportion of floating organisms increased in spring, and a similar composition of dominant species was
formed. In summer, a higher proportion of predators with the incudate type of mastax were observed.
It was proved by the correlation of this group with early warming of water in spring and early date of its
maximum level.

The extremely low-water years of 2011 and 2014 saw the lowest flows and short floods, low levels,
early low water, and reduced yields of juvenile fish on the shelf (Litvinov and Podolyako, 2014; Taradina
and Chavychalova, 2017). In spring, a decrease in specific species richness of zooplankton (also indi-
cated by correlations), the Shannon index and the average individual crustacean mass was observed.
In summer, the biomass of Cladocera and their specific species richness increased, while Rotifera abun-
dance and Shannon index decreased.

Conclusion

The studies carried out in 2011-2014 are evince of a decrease in the specific species richness of
zooplankton, the average individual mass of crustaceans and an increase in the proportion of juvenile
Copepoda at the expense of fine filter feeders occurred in low-water years due to the decreased runoff
and water levels, the reduced areas of inundated floodplains, low flow of organisms and organic matter
from such floodplains into the channels. An increase in maximum levels, duration of flooding, input of
allochthonous organic matter and organisms from the floodplain (with the presence of vegetation) into
the channels, yield of juvenile fish on the canals, etc. were the key factors in the conditions of water
availability increase in the mid-water year. Due to this, the zooplankton contained the maximum number
of species encountered, high specific species richness and average individual mass of crustaceans,
as well as the minimum proportion of the mixed (by mode of movement and feeding) group of juvenile
Copepoda. In spring, there was a high biomass of zooplankton at the expense of crustaceans, a
maximum proportion of floating verticators and a dominance of phytophilic groups of Cladocera. In
summer, there was an increase in the quantitative indices of Rotifera. However, as compared to spring,
the specific species richness and biomass of Cladocera, the average individual mass of crustaceans
decreased and the Shannon index increased because of control from above.

The main factors in the series of low-water years were conditions of the lowest flow volume with
a significant drop in water level before flooding and then a sharp rise, early low water, prolonged cold
weather, low yields of juvenile fish on the spawing grounds, and reduced inputs of allochthonous organic
matter and organisms from the floodplain. This led to an increase in Copepoda abundance at the expense
of juvenile individuals. In spring, minimal quantitative characteristics of zooplankton but a high Shannon
Index of abundance were noted. In summer, this resulted in low specific species richness of zooplankton
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with a minimum number of rotifers. In contrast to spring, the number of crustacean species, average
individual mass of crustaceans, biomass of Cladocera increased, but the Shannon index decreased.

Thus, the leading factors regulating the qualitative and quantitative characteristics of zooplankton
were the volume of runoff during the flood, its duration, water levels before the flood onset, height and
rate of rise of levels, water temperature in spring and yield of juvenile fish. However, in the channels,
water levels and water temperature increased annually in spring, while in summer the closest conditions
were formed with the establishment of low water levels and stabilization of high water temperatures.
This probably caused changes in the quantitative characteristics and structure of ecological groups of
zooplankton in mid- and low-water years mainly at the trend level.
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