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AHHomauus. B nione—asrycte 2018-2020 rr. ¢ ucnonb3oBaHvem
ryopecLeHTHON AnarHOCTUKM UCCneaoBaHO NPOCTPaHCTBEHHOE
pacnpegeneHue xnopodunna a (Xn a) n koadpduumeHTa oTo-
CUHTETUYecKon akTuBHocTh (KPA) dutonnaHkTtoHa PbiGuHckoro
BopoxpaHunuwa. Npu pasnnyHbIX rmapoMeTeoponormyeckmx yc-
noBusax cogepkaHue Xn a uameHsanock B gnanasoHe 0.26—116 mk-
r/n npu cpegHnx 3HadeHuax 16.7—21.2mkr/n. MNMpocTpaHCcTBEHHOE
pacnpegeneHue Xn a B 2019 r. xapakTtepunsoBanocb yMepeHHOMN,
B 2018, 2020 rr. — BbICOKOM HEOOHOPOAHOCTLIO NpU Ko uLn-
eHTax Bapuauun Cv = 69, 91 n 140% cooTBeTCTBEHHO. Benunun-
Hbl KOA Bapbuposanu ot 0.01 go 0.58 npu cpegHux 3Ha4YeHusaX
0.30-0.42. B 8-47% cny4aeB oTMe4deHbl KOA Huxe 0.3, oTpaxa-
olWme pa3suTMe OUTOMMNAHKTOHA B CTPECCOBbIX ycrnoBusXx. [po-
CTpaHCcTBeHHoe pacnpegeneHne KOPA Gonee ogHopodHO, 4YeMm
pacnpegeneHue Xn a (Cv = 18-130%). Omnupuyeckn BoiBegeHa
HenunHelrHas 3aBucumoctb KPA ot copgepxaHmsa Xn a (R? = 0.50).
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Introduction

The Rybinsk Reservoir is studied by hydrologists
and ecologists for many years (Struktura..., 2018).
Planktonic algae, which produce the bulk of organic
matter and transform the incoming energy of solar
radiation into the ordered energy of bonds of organic
molecules during photosynthesis (Todorenko, 2016),
are sensitive to external factors (Elizarova, 1999;
Suggett et al., 2010). Various indicators and methods
are used to assess the state of algocenoses, including
chlorophyll a concentration, primary production,

abundance and biomass of phytoplankton (Korneva,

2015; Metody... 1975; Mineeva, 2004, 2009,
2021; Sigareva, 2012). Nowadays, instrumental
measurements  for  chlorophyll  concentration

(including fluorescence) are becoming widespread,
the methods for measuring the photosynthetic activity
and the efficiency of the quantum yield of photosystem
Il (PS Il) getting much development (Gaevsky et al.,
1993; Goltsev et al., 2014; lvanova et al. et al., 2014;
Matorin and Rubin, 2012; Popik, 2015).
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The spatial heterogeneity of the environment is
one of the important stabilizing factors in the func-
tioning of any ecosystem. When studying large wa-
ter areas, researchers are faced with heterogeneity
in the phytoplankton distribution (Koreneva, 2017;
Mineeva, 2004; Piirsoo et. al., 2008). This peculiarity
is associated with various hydrodynamic processes,
vital activity of aquatic organisms, nutrient limitation,
etc. (Ekologicheskie..., 1993; Mineeva, 2021; Tesfay,
2007). Large-scale phytoplankton heterogeneity pro-
vides a number of competitive advantages; it is char-
acterized by large-scale both space and time (dozens
of days and thousands of kilometers). This work con-
tinues the series of long-term extended studies on the
development of phytoplankton in the Rybinsk Reser-
voir and its horizontal distribution (Struktura..., 2018).

The study aims to assess the spatial heteroge-
neity and photosynthetic activity of phytoplankton in
the Rybinsk Reservoir during periods with different
hydroclimatic conditions.

Materials and methods

The Rybinsk Reservoir (N 58°22'30" E 38°25'04")
is located in the southern taiga subzone; it is large
(4580 km?) and relatively shallow (average depth
of 5.6 m) water body. About 20% of its total area is
occupied by shallow waters with the depths of less than
2.0 m, about 25%, by the depths exceeding 8 m. The
reservoir is divided into four sections (Rybinskoe...,
1972): Volga, Sheksna, and Mologa reaches, located
along flooded riverbeds, and the Main Reach, which
occupies the vast central part of the reservoir (Fig. 1).

Fig. 1. Schematic map of the Rybinsk Reservoir with the location of sampling stations. | —stations, Il — boundaries.
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Table 1. Meteorological conditions in a week before sampling in 2018—-2020.

Year Average wind speed  Cloudiness, Precipitation, Share of still Average air
(gusts), m/s % mm days, % temperature, °C
2018 2.2 (5) 50 17.2 18.4
2019 1.7 (5) 40 35.9 12.5
2020 3.1(9) 60 12.5 17.0

The material was collected at 30 deep-water
(channel) and at 17 shallow-water (at the mouths
of small rivers and coastal) stations (Fig. 1) in July—
August 2018-2020 (the warmest period of the year).
Samples were taken with an Elgmork bathometer in
the euphotic zone (0-2 m).

The content of chlorophyll a (Chl a) was deter-
mined, equal to its total amount in the three main di-
visions of freshwater algae (cyanobacteria, diatoms,
and green: Chl, ~Chl, and Chl, ), and the coef-
ficient of photosynthetic activity (PAC), or effective
quantum yield of photosystem Il. Both indicators were
measured using the PFL-3004 fluorimeter according
to the methodology developed at the Krasnoyarsk
State University (Gaevsky et al., 2005). In order to
determine Chl a, the fluorescence yield at wavelength
~680 nm was measured upon excitation of natural
water by light with the wavelengths of 410, 490, and
540 nm before and after the addition of simazine
(electron transport chain (ETC) inhibitor) to the sam-
ple. The Chl a concentration was calculated using the
system of equations developed by V.M. Gol'd et al.
(1986). In order to calculate PAC, the fluorescence
yield of natural water was determined upon excitation
with white light at an intensity of 150 W/m? before and
after the addition of simazine to the sample cuvette,
then PAC was calculated by the equation:

KPA=F__IF _~-F,

where F’  is the maximum fluorescence of the
sample adapted to light after ETC inhibitor was
added; F,is the stationary fluorescence in the light
(Gol'd et al., 1986).

PAC is a dimensionless value that ranges
0-0.83, where 0.83 is the maximum value obtained
for a healthy culture (Gol'tsev et al., 2014). When
assessing photosynthetic activity based on PAC, the
following ranges are used (Kurochkina, 2019): 0-0.3
refers to low photosynthetic activity (at which inhibition
of solar energy absorption processes and damage
to the integrity of photosystems can be observed);
0.3-0.5, to normal photosynthetic activity; > 0.5, to
high photosynthetic activity (observed under optimal
conditions, when algae develop (grow) actively).

The STATISTICA 10 (Statsoft, Russia), PAST 4.03
(Oyvind Hammer, Norway), and Excel 2016 (Micro-
soft, USA) software packages were used for statistical

data processing. Meteorological data (air tempera-
ture, wind speed, and direction) were downloaded
from the online archives of weather forecast website
www.rp5.ru for the station Cherepovets'. Water char-
acteristics of the reservoir (level, inflow, flow) were
obtained from the RusHydro website? and from pub-
lished data (Struktura..., 2018).

Results and discussion

Growing seasons of 2018-2020 were
characterized by different hydrometeorological
conditions (Table 1). In each growing season, the
westerly, southerly, and northerly winds prevailed,
their total average share reached up to 61-65%.
Calm conditions were noted in 6-8% of cases. The
easterly and northeasterly winds were least of all
recorded. In 2020, the larger share of southerly winds
(up to 10%) and smaller, of westerly ones, was ob-
served compared to the other years under consider-
ation. The average wind speed was 2.7 m/s in each
study year.

The growing season of 2018 was characterized
by the highest average air temperature (12 °C). In
the week prior to sampling date, northerly and north-
easterly winds prevailed (> 52%) with the share of
calm hours amounting to 17% (Fig. 2). The year of
2019 was the coldest year (average air temperature
of the growing season was 10.6 °C), windless year
(average wind speed 2.3 m/s, calm days were 20% of
total), and low-water year. A week before the material
was collected, southwesterly winds prevailed (27% of
cases) with a high share of calm weather. In 2020,
the growing season was characterized by higher wind
speed (2.9 m/s) and heavy precipitation. The hydro-
meteorological situation in late July—early August
was unfavorable for phytoplankton vegetation. There
was a change in seasonal weather conditions with a
change in the prevailing winds from the westerly ones
to the northerly ones. Wind speeds reached 9 m/s;
precipitation was observed daily for two weeks.

According to previously obtained data (Semadeni
and Mineeva, 2019), the bulk of phytoplankton in the
daytime is concentrated in the photic layer (> 80%
of the recorded maximum Chl a and PAC values),

' https://rp5.ru/Archive_weather_in_Cherepovets (accessed: 10.09.21)
2 http:/iwww.rushydro.ru/hydrology/informer / (accessed: 12.09.21)
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which for the Rybinsk Reservoir is 0—2 m. At low wind
speed, elevated Chl a concentration is confined to the
southern part of the reservoir and shallow water ar-
eas. At steadily directed winds (exceeding 2 m/s), the
photic layer may be subjected to intense wind action,
changing the photosynthetic activity of phytoplankton
(Mosharov and Sergeeva, 2018). In the reservoir, a
horizontal displacement of algae in the direction of
the dominant winds was noted (Mineeva, 2004).

During the study period, Chl a concentration cor-
responded to values typical of high summer (Struk-
tura..., 2018). In the summer of 2018, the content of
Chl a varied within 4.5-80 pg/L. As calm weather and
low wind (2.5 m/s) predominated, the spatial distribu-
tion of Chl a was non-uniform (Cv = 91%). The high-
est concentration of Chl a was noted in the central
and southern parts of the reservoir (Fig. 3). This pat-
tern of pigment distribution in the reservoir is typical
for the summer period of maximum water heating (Mi-
neeva, 2021). High Chl a (> 60 ug/L) was recorded
in the southern part of the Main Reach in the zone of
the local ecotone, where various water masses were
confluencing and mixing. High values of Chl a (> 40
pg/L) were also noted in the upper Sheksna Reach
near the city of Cherepovets and in the Sheksna Riv-
er. The pigment concentration was significantly lower
in the other parts of the reservoir, with minimal values
registered in the Mologa Reach (< 5 ug/L).

The biomass ratio of the main taxonomic groups
of phytoplankton is similar to the data published ear-
lier (Korneva, 2015; Struktura..., 2018;): Chl_  and
Chl;, contribute the most to total Chl a At the Volga
Reach the contribution of Chl reaches 78%, while
that of Chl,_ is the lowest. At the Main and Mologa
reaches, the contribution of Chl, _and Chl_ is close
to the average, 63-67% and 24-31%, respectively
(Table 2). At the Sheksna Reach, more than a half
of Chl a is represented by Chl,, (57%), only a third
(32%), by Chl,, The contnbutlon of Chl, is low,
varying from 5% at the Volga Reach up to 10% at the
Sheksna Reach. Generally, average relative content
of Chlcyanand Chl,.is 62 and 31%, respectively, in the
Rybinsk Reservoir.

The highest average content of Chl a (28 ug/L)
has been recorded at the Volga and Sheksna reach-
es; at the Main Reach, it did not exceed 18 ug/L. Such
values are typical for eutrophic waters. At the Mologa
Reach, the content of Chl a (10.1 ug/L) is close to
that observed in mesotrophic waters (Table 2). In the
entire reservoir, the average value (21.2 pg/L) is the
highest over three years of observations. This is due
to weak mixing of the water column and the ascend-
ing of the blue-green algae into the surface water lay-
er.

In 2019, Chl a distribution over the water area
of the Rybinsk Reservoir was moderately heteroge-
neous (Cv = 69%). The range of values was shifted
leftwards compared to 2018 (2.2-68.0 ug/L). Active

vegetation of phytoplankton was noted in the north-
ern part of Main Reach and at the Sheksna Reach, as
well as in the southeastern part of the reservoir. Max-
imum Chl a (35-68 pg/L) were registered at the Main
Reach. Chl a concentration did not exceed 24 ug/L at
three other reaches. Minimum values (< 5 ug/L) were
noted at the Mologa Reach and in the eastern part of
the Main Reach (Fig. 3).

The chlorophyll ratio of the main divisions of al-
gae differed from the values obtained in 2018. Chl-
cyan Predominated (50-56%), but the share of Chl,
decreased down to 35% at the Main and Sheksna
reaches, while the share of Chl,__increased up to
44-51% at the Volga and Mologa reaches compared
to the previous year. The relative content of Chl_, at
the Main and Volga reaches was the highest for the
study period (15-22%). The average relative content
of Chl, ., and Chl,_ in the reservoir was 47 and 40%,
respectively.

The average concentration of Chl a at the Volga,
Main, and Sheksna reaches were 18.4, 19.2, and
20.3 pg/L, respectively; this corresponded to eutro-
phic waters. At the Mologa Reach, the value of this
indicator was almost two times lower (11 pg/L), i.e
moderately eutrophic waters (Table 2). In 2019, the
average Chl a concentration in the entire reservoir
was lower than in 2018 (17.6 pg/L). In the coastal
zone of the Sheksna Reach, Chl a concentration was
36% higher than at deep-water stations; in the Mologa
Reach near the shore, it decreased by 15%. No signif-
icant differences were found in the other two reaches.

The year of 2020 is characterized by the widest
range of values (from 0.26 to 116 pg/L) and the most
heterogeneous spatial distribution of Chl a (Cv =
140%). The maximum concentration of Chl a were
noted in the southern part of the Volga Reach and at
the Sheksna Reach (116 and 91 pg/L, respectively).
High values were also registered in the western part
of the Mologa Reach (66 ug/L). There were no large
accumulations of algae in the open areas: the lowest
Chl a (< 5 pg/L) was recorded in the center of the
reservoir (Fig. 3).

In total Chl a, Chl,,_dominated at the Mologa and
Sheksna reaches (81% and 50%), while Chlcyandomi-
nated at the Main and Volga reaches (53% and 59%).
The contribution of Chl, was low (5-10%). The aver-
age relative content of Chl, nand Chlg, in contrast
to the two previous years, was characterlzed by an
increase in the share of the latter up to 48%.

Average concentration of Chl a at the Volga,
Sheksna, and Mologa reaches (25, 15.6, 18.3 ug/L)
correspond to the eutrophic waters, while the Main
Reach (12.4 pg/L) is moderately eutrophic (Table 2).
Lower water temperature, constant wind activity with
heavy precipitation led to a decrease in photosynthet-
ic activity due to the competitive advantage of small-
sized algae with lower productivity (Winder and Sum-
mer, 2012). This is expressed in a decrease in the
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Fig. 2. Wind rose: winds prevailing a week before sampling in 2018—-2020.

Fig. 3. Spatial distribution of Chl a (ug/L) in the Rybinsk Reservoir in the summer period of 2018-2020.

Fig. 4. Spatial distribution of PAC in the Rybinsk Reservoir in the summer period of 2018-2020.
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Table 2. Average content of chlorophyll a and share of chlorophyll of main algae taxa. ChICyan — chlorophyll of
cyanobacteria; Chl,,_— chlorophyll of diatoms; Chl,, — chlorophyll of green algae.

Year Reach Chl a, pg/L Chlg,o % Chlg,, %  Chly, %
Volga 285122 78 17 5
Main 189+ 5.1 67 24 9
2018 Mologa 27971 63 31 6
Sheksna 10.1+14 33 57 10
Total for Rybinsk Reservoir 21.2+3.51 62 30 8
Volga 18.4£3.2 34 44 22
Main 19.2+4.5 50 35 15
2019 Mologa 20.2+34 42 51 7
Sheksna 11.1+£26 56 35 9
Total for Rybinsk Reservoir 17.6 £ 2.03 47 40 13
Volga 252199 59 34 7
Main 124124 53 37 10
2020 Mologa 15.6+0.9 15 81 4
Sheksna 18.3+7.2 40 50 10
Total for Rybinsk Reservoir 16.7+ 3.4 43 48 9

average Chl a concentration down to 16.7 ug/L, the
lowest for the entire study area over the entire study
period. Under such conditions, the vegetation of al-
gae in the semi-closed parts of the reservoir is more
intense (Pyrina et al., 1976). A significant difference in
the content of Chl a has been registered at deep-wa-
ter and shallow-water coastal stations of each reach:
in shallow waters, the values were 2—4 times higher
than in the open part of the reservaoir.

The effective quantum yield of fluorescence is
one of the parameters assessing the state of the pho-
tosynthetic apparatus of phytoplankton (Goltsev and
Kaladzhi, 2016; Hartig et al., 1998; Mosharov and
Sergeeva, 2018). The photosynthetic activity coeffici-
ent (PAC) characterizes the proportion of light quan-
ta used in photosynthetic reactions of PS Il (Maxwell
and Johnson, 2000), and reflects the efficiency of so-
lar energy absorption.

In 2018, PAC values in the Rybinsk Reservoir
varied from 0.19 to 0.51 (Cv = 22%). The pattern of
PAC distribution (Fig. 4) was similar to that of Chl a
(Fig. 3). PAC values above 0.40 were noted in the
northern part of the water area in the Sheksna Reach
(PAC,, = 0.41) and in the Sheksna River, as well as
at the Volga Reach (PAC,_ = 0.38). Low PAC (< 0.30)
were observed singly at the Mologa Reach and in
the eastern part of the reservoir. The predominance
of certain division of algae did not affect the overall
photosynthetic activity. Thus, at the Mologa, Main, and

Volga reaches, Chl_  dominated in total Chl a, at the
Sheksna Reach, this was Chl,  with approximately
equal PAC values. At seven stations, PAC < 0.3 were
noted, which indicated the inhibition of photosynthet-
ic processes (Rubin, 2005). PAC exceeding 0.50 was
noted only at one station (Table 3). We argue that the
mass development of phytoplankton organisms leads
to intercompetition for light and nutrients, which is ex-
pressed by a decrease in the efficiency of solar en-
ergy absorption at chlorophyll concentrations of more
than 40 pg/L. The average PAC at the Main and Molo-
ga reaches (0.33) is close to the critical low value; at
the Sheksna and Volga reaches, they are higher (0.41
and 0.39, respectively) and correspond to the normal
functioning of phytoplankton community (Table 4).
The average PAC for the entire reservoir was 0.36.

In 2019, a range of PAC was close to that ob-
served in 2018 (0.26-0.58), with low variability (Cv =
18%). The spatial distribution of PAC also differed lit-
tle comparing to 2018 (Fig. 4), but did not coincide
with the distribution of Chl a (Fig. 3). High values of
PAC (> 0.50) were noted in different areas of the Vol-
ga, Main, and Sheksna reaches, while the minimum
values (< 0.30) were recorded in the Mologa Reach.
The maximum average PAC (0.49) was registered at
the Volga Reach, where the Chl,,_share reached 72%
in the total Chl a, accompanied by high share of Chl |
(25%). Similar data were obtained by other research-
ers (Darchambeau et al. al., 2014; Ratan, 2017). The
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Table 3. Frequency of occurrence of PAC value range in the Rybinsk Reservoir in 2018-2020.

PAC
Year
<0.3 0.3-0.5 0.5-0.7
2018 23% 71% 3%
2019 8% 76% 16%
2020 47% 53% 0%
Total 26% 67% 6%
Table 4. PAC values (mean + error of mean) at the reaches of the Rybinsk Reservoir.
Year
Reach
2018 2019 2020
Volga 0.39+0.03 0.49 £ 0.03 0.23 £ 0.06
Main 0.33+£0.06 0.42 +0.02 0.30+£0.03
Mologa 0.33+£0.07 0.36 £ 0.02 0.41 +£0.02
Sheksna 0.41 +£0.06 0.43 £0.02 0.27 £ 0.04

highest average PAC (0.46) was also noted here. At
the Main, Sheksna, and Mologa reaches, lower mean
values were obtained (0.42, 0.43, and 0.36, respec-
tively). The first two were characterized by the Chl_
to Chl,__ratio typical for the summer period (~60% to
~30%, respectively); at the Mologa Reach, more than
half of the total Chl a was represented by Chl,, The
photosynthetic activity of algae from deep-water and
shallow-water stations differed insignificantly in most
cases. At the Mologa Reach, the average PAC at the
riverbed stations was 11% higher than in the coastal
zone. In 8% of cases, PAC was below 0.30, in 16%,
exceeded 0.5. Compared to 2018, phytoplankton
vegetated under more favorable conditions in 2019.
The average PAC was 0.41 for the entire reservoir.
In 2020, under unstable hydrometeorological con-
ditions, the PAC range was the widest (0.02-0.47),
and the spatial distribution was characterized by the
highest heterogeneity observed for all the considered
years (Cv = 143%). High PAC (> 0.40) were noted
locally at all reaches of the reservoir (Fig. 5). The
minimum values (< 0.30) were registered in the open
areas of the Main and Volga reaches. In these zones,
ChICyan dominated in the total Chl a (53—-58%). A high-
er concentration of Chl,_ _was recorded in the semi-
closed part of the reservoir. The average PAC (0.23,
0.27, and 0.30) reflected the development of phyto-
plankton under stress conditions at the Volga, Shek-
sna, and Main reaches, respectively. At the semi-
closed Mologa Reach, PAC_ = 0.41. The maximum
PAC was noted in the shallow semi-closed areas of
the reservoir and in the river mouths. The PAC was

higher in the coastal zone comparing to the channel
stations: at the Volga Reach, by 36%, at the Mologa
Reach, by 6%. PAC < 0.3 was noted in 47% of cases,
PAC exceeding 0.5 was not registered. The average
PAC_ for the entire reservoir was 0.30, the lowest for
the entire study period.

The content of Chl a is considered to be a universal
ecological and physiological characteristic of the pho-
tosynthetic activity of algae; this indicator reflects the
amount of synthesized biomass under the prevailing
environmental conditions and the physiological state of
organisms. In pristine, anthropogenically undisturbed
ecosystems, the relationship between the quantum
yield and Chl a is most often positive (Mosharov and
Sergeeva, 2018; Popik, 2015). In the Rybinsk Reser-
voir in 2018, the relationship between PAC and Chl a
is moderate (r= 0.55), the relationship with the relative
amount of Chl,__and Chl_, is closer (r=0.66 and 0.76,
respectively). In 2019, a significant relationship is ob-
served only with the share of Chl, (r=0.59). In 2020,
the closest correlation of PAC with Chl a is obtained
(r=10.78), less pronounced with the shares of Chl_
and Chl., (r =0.61 and 0.66, respectively). For the
entire period of studies (2018-2020), the relationship
between PAC and Chl a is characterized by moderate
tightness (r = 0.64). If one excludes the Chl a values
exceeding 40 pg/L from the dataset, which are charac-
teristic of eutrophic and hypereutrophic water bodies,
the correlation coefficient increases (r = 0.73).

In general, Chl a is related to PAC non-linearly.
When ranking PAC values by chlorophyll content,
an approximation equation with a high coefficient
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Fig 5. Dependence of PAC on Chl a content in 2018 (A) and in 2018-2020 (B).

27



28 Semadeni, I.V., 2023. Ecosystem Transformation 6 (2), 19-32.

of determination has been obtained both for certain
years (Fig. 5A) and for the entire dataset (Fig. 5B):

K®A = -0.00005xXr2 + Xn + 0.148
(n = 114, R? = 0.50).

For the entire data series, the relationship is
non-linear; a logarithmic increase of PAC up to 0.5
occurs along an increase of Chl a concentration
up to 40 pg/L. The maximum activity of the
photosynthetic apparatus (PAC = 0.58) is observed at
Chl a concentration of 20 to 40 pg/L. As Chl a content
increases further, PAC decreases (Fig. 5). In 2018,
the relationship between PAC and Chl a at > 40 pg/L
has a shape of logarithmic curve except two stations.

Conclusions

The spatial distribution of chlorophyll in the Rybinsk
Reservoir in summer is characterized by a high
degree of heterogeneity, when coefficients of variation
range from 69% at prevailing calm weather and low
wind speed up to 140% at strong winds and heavy
precipitation. Chlorophyll concentration is generally
higher in coastal areas and in semi-closed shallow
water areas than at deep (open) riverbed stations.

PAC, determined for the phytoplankton of the
Rybinsk Reservoir for the first time, ranges 0.3-0.5
in most of cases (66%), which indicates a normal
physiological state of algae. PAC less than 0.3 makes
up a significant share at unstable hydrometeorological
conditions.

The spatial distribution of PAC and Chl a do
not coincide with each other. High PAC is observed
throughout the entire water area of the reservoir,
depending on the conditions of a certain year; high
PAC is registered most often in the southern and
northern parts of the reservoir. In 2018 and 2019,
a horizontal displacement of algae along the wind
direction has been noted, which did not affect PAC.
The relationship between PAC and Chl is not linear.
The maximum activity of the photosynthetic apparatus
is observed in the range of chlorophyll concentrations
from 20 to 40 pg/L. At Chl a above 40 ug/L, PAC
decreases.
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